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ABSTRACT 

The paper surveys the present state of the theory of 

linear, least squares prediction of q-variate weakly stationary 

stochastic processes with discrete time.   The emphasis is on 

logical order.   Hence recent developments are described within 

the context of a general theory rather than chronologically. 

Methods for computing the predictor are briefly discussed, but 

purely statistical questions such as the estimation of covariances 

are omitted. 
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RECENT TRENDS IN MULTIVARIATE PREDICTION THEORY 

P. Masani 

1.   Introduction 

From among the many facets of mult'variate prediction we will 

consider only the theory of linear, least squares prediction of q- 

variate, weakly stationary stochastic processes with discrete time. Our 

purpose is to give a coherent account of the present state of this 

theory.   We shall therefore refer to recent developments not in iso- 

lation but within the context of the general theoretical framework. 

Our emphasis will be on generality and logical order, but the practical 

side will also be discussed though somewhat briefly (of. §§2,15). 

Statistical questions of estimation, etc. will be omitted. 

To recall the problem involved in such prediction suppose that 

x  is a q-dimensional vector quantity associated with some long en- 

during mechanism in nature, and that  x    denotes its value at time 

t = n   .    Suppose that we have been measuring  x every second 

from the remote past up to the present moment  t = 0,   and have so 

obtained a sequence of readings 

(1.1) -k ^k» k = 0> 'li -z* '"    ' 

Is there some way to forecast the future value  x ,   v > 1,   on the 

basis of the information contained in (1.1)? Without further knowledge 

of the mechanism our answer to this question must be in the negative. 

If, however, we assume that our mechanism is such that the sequence 
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(x.). s_ ^  Is part of a time-sequence {sample-function) of a q-variate 
00 

stationary stochastic process  {SP)   {f )   _       over a probability space 

(n,ß, P),   so that 

(1.2) x   = f  (wj ,   w. € ß,   -oo < n < <*> -n    —n    0' *     0      ' 

and that we know the probabilistic structure of this  SP, then the 

answer is in the affirmative as we proceed to indicate. 

Denote the forecast value of x     by  x     .  As  x     is to depend 

on the past and present values  x, , k < 0   alone, we must expect 

that  x   ^x    except when our mechanism is purely deterministic.   Such 

mechanisms are of course very important, but they are only of per- 

ipheral interest in the theory of probabilistic or statistical prediction. 

which concerns us here.   In this theory the problem is to find the 

x      which comes closest to x     under some preassigned statistical 

error criterion.   In least squares, linear prediction we adopt the root- 

mean-square   (RMS)    error criterion, and confine attention  to  x 
n     (n) which are mean limits of linear combinations   S   A.      x   ,  .   where 

k=0   k    " "k ' 
A^       are  q X q  matrices   { )   .   It can be shown that the  A^      are 

determinable and the problem solvable when the covariance structure 
00 

of the stationary   SP   ( f ) ^ is known. 

To state the problem in greater detail, we are given a bisequence 
00 

( f  )      * Gi q-variates 
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(1.3) in = (fJi' •,,' 0'   Where  fnc V"'ß'P)   * 

such that the   q X q  covariance matrix 

(1.4) [E(fi  • V )] =[v{i,J)] = r 1      m      n 'J     l Tm-nJ      -m-n 

depends only on the difference  m-n (   ) .   This is the hypothesis of 

weak stationaritv.   Now let n\0   be the (closed, linear) subspace of 

LJß. ß. P)   spanned by the  f  ,   with  n < 0  and  1 < i  ' q;   in c    '   ' ~ n " "* 

symbols 

(1.5) tn0 = ©(f^,   n <0,   1< i< q)    . 

Then our problem may be stated as follows: 

1.6  Prediction Problem.   Assuming as known the covariance 

oo -1 -q 
bisequence  ( £.). ^ and given v>l,    find variates    f   ,• ..»f   ^ tn« 
such that 

E(|fl -fM2) <E(|f} -g|2), gc n\n, 1< 1< q   . 

Also find the prediction-error covariance matrix 

G    ^{(f1 -fi)(f j -f j)]   . 
w V        fc V V V V 

Now L2( n, ß, P)   is a Hubert space with the inner product pro- 

duct  (f, g)  = E( fg)   .   Since our problem involves only second-order 

moments, we can restate it as one for a Hilbert space  W,   as 

Kolmogorov first emphasized in 1940, cf. [12].   To get the usual 

•• 
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probabilistic version of the theory we must of course think of this  W 

as being  L (ß, ß , P)   .   But for theoretical purposes it is best to 

leave M unspecified.   Adopting this point of view, what we have 
00 

is a bisequence of vectors  (f   ) ^  such that 

f    =(fj. ...,f^)   where   f^ c it; - n       n n n 

i. e. each  f     is in the Cartesian product  W     of M with itself  q 

times.   For q-variate  prediction the structure of this hyperspace is 

crucial and must first engage our attention { §2). 

2.   The Gram matricial structure of Mq 

Let  W   be any (complex) Hilbert space,   q > 1,   and  W    be the 

Cartesian product of  M with itself  q times, i.e. the set of all vectors 

f =(f ,...,f  )   such that each  f   € M   .   To make  W     serviceable in 

prediction theory we must endow it with a Gram matricial structure, as Doob 

[4, p. 594] noticed.   For  f, g c Jiq,   the   qXq  matrix 

(2.1) (f, g) = [(f1, gj)] 

( 3) is called the Gramian of the ordered pair  f, g       .   It is reasonable to 

(4) think of it as a matricial inner-product in view of its properties : 

(2.2) (f ,f) > 0;      (f,f) =0 =J>f =0   ; 

(2.3) (I   Af,E    Bkgk)=S    E     A(f,g)B* 
j« J    ]   J   kcK   K    K      je Jkc K   J    3     K    K 

where J, K are finite sets and A , B,    are   qXq matrices. 
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This suggests defining orthogonality in  W    by the relation: 

(2.4) f j.g   te^(f,g)  =0    (i.e.    <=>   ^jV,    l<i,j<q.) 

It also suggests taking linear combinations of f   c W     with q X q 

matrix rather than complex coefficients, and calling a subset in of M 

a linear manifold, if and only if 

f ,9 t |n => for all q X q matrices A,B,   Af + Bgcln 

The appropriate topology for  M    turns out, however, to be the 

familiar one induced by the ( scalar) inner product in  M : 

(2.5) Uf,g)) =trace(f,g)  =£ fi gj   , 
i=l 

or rather by the corresponding norm 

(2.6) |f|   =:N/((f,f))   =^Z     l^l2    • 
i=l 

It is well known that  üq  is Hilbert space under the inner product (2. 5). 

We call to  a subspace of M   , if and only if fo is both a linear manifold 

and a closed set.   It is easy to check, cf. [36,1,5.8], that 

(2. 7) fo  is a subspace of M   <=> in = m ,   where in  is a subspace of  u . 

With these concepts of orthogonality, distance and subspace we can ex- 

tend to  li    the well-known theory of orthogonal prelections for Hilbert 

spaces.   Thus we have, cf. [ 36,1,5.8; II, 1*17], 

2.8  Lemma.   If f < M    and to   is a subspace of IT,   then there 

exists a unique f e )iq  satisfying any one (and therefore both) of the 
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following equivalent conditions 

(i) i«!ü&f-C±!I} 

(2)    f e fo   &  (f - f, f -f) < (f-g, f-gj,   g« to    . 

a th -^        * 
Let tU = m    (of. 2. 7).   Then the  i      component  f    of f   is the (ordinary) 

orthogonal projection of the  i      component   f    of f   on fo    . 

2. 9  Def.     The   f   mentioned in 2. 8 is called the orthogonal pro- 

lection of f on in and written  (f Itn)   . 

We thus obtain a structure for  M    which differs from but also closely 

resembles that of a Hubert space, and which we shall therefore call 

"Hilbertian".    In terms of this structure we can give a definition of a q-ple, 

weakly stationary  SP,   in which all side issues are purged and the essential 

idea brought to the forefront, cf. [ 37, § 5]: 
00 

2.10  Def.     A  q-ple, weakly stationary   SP   is a bisequence   {f   ) ^ 

such that each  f    c W    and the Gram matrix -n 

(f   ,f   ) = r -nr-n        -m-n 
00 so 

depends only on   m-n   .   (FA ^   is called the covariance bisequence 

of the   SP  . 
00 

Associated with a   q-ple   weakly stationary   SP (f   )_oo   are the present 
5 

and past subspaces  in   , ITi   (   ): 
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(2.11) <. d      ^     i 
lnn   =    tjlfj^, k<n, 1< i < q) CM, 

d 

and the terminal subspaces 

lÜoo   =    (ö(fk, allk),     ^   «gtf^, aUk,   l<i<q) 
d d 

(2.12) 
00 oo 

d    n-oo"11 -00     d    ne-00   n 

We easily find, cf.   [36,1,6.5], that 

(2.13) tT\    =1^ -00 < n < «   , - n      n _    —.      7 

ad obviously 

(2.14) tu ^ c tn   c in ^1 cin^   . --w — - n — - n+l — - oo 

In terms of these subspaces we can easily formulate the concept of 

determinism and tersely restate the Prediction Problem 1. 6: 

2.15 Def.    We call the  SP deterministic, non-deterministic, purely 

non-deterministic, according as 

!B_oo =!lioo' Ü}-ooCÜ:oo»       !Ü-oo= <°}    • 

00 
2.16 Prediction Problem.   Let   (f   )_oo  be a  q-ple, weakly stationary 

00 
SP  with covariance bisequence   ( r   )_oo   and let   v > 1   .    Find 

(i)   the matrices A^      such that 

(n) 
lv = (fvllB0)  =lim       I   A(n,f 

n-*<*> k=0 
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(il) G    Mf    -f    » f " * J   • — V -V       - v      -       -v 

G     is called the prediction error matrix for lag  v   .    Following 

00 
Zasuhin [ 43 1 we call   p = rank G,   the rank of the SP (f   ) r. 

Obviously 

( 2.17)        the   SP  is deterministic <=> p = 0, i.e. G . = Q   . 

The deterministic case is only of peripheral interest to us, cf.  §1. 

Of much theoretical interest, though somewhat pathological,are the non- 

deterministic cases of degenerate rank   1 <. p < q   •   The really interesting 

case from a practical standpoint is that of full rank  p = q,   for which 

det G. > 0   .   We note that since   G    > G,   for   v > 1,   we have 1 —v —    I —  ' 

(2.18) p = q => det G    > 0.       v > 1   . 

3.   Elementary solution of the Prediction Problem 

Seemingly the easiest way to solve the Problem 2.16 is by an extention 

of the method of undetermined coefficients.   This has been explained in 

[36,11, §2] ,    and it will suffice to indicate only a couple of steps.   We 

may choose the  A. (n) so that 

n 
(3.1) f    - ?    k{n) f i      f       f f Lv     ^n-k     --k     "L     -0' --l'-'-'-'n   ' k=0 

whence, in block matrix notation. 

(3.2) [A^,...,^"'] - 0 -n 

r   ... rft - -n      -o 

= [r ,...,r     1   . 1 - v'       ' - v+n-1 
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It may be shown that the second   (n+1) qX (n+1) q  matrix on the left is 

invertible if and only if detG.^0   .   Thus in the full rank case   p * q, theco- 

efficients   A)       can be uniquely determined. 

This method involves solving a system of linear equations.   It would 

be feasible for so-called weakly (or wide sense) N-Markovian processes, 

i.e., of.    [ 4, pp. 90, 506], weakly stationary ones for which 

<3-3)      iv = (^1  S<l.k' k^0)>  =^vl ©l-k» 0^k^N))'    v^1 

and where, consequently, for a given   v > 1  there is a fixed set of  N + 1 

matrices   A-....,A.T  suchthat 

f     rA-f.+A.f   . + ...+A., f   -T   .#- -v     -0-0     -1--1 -N--N 

One might even be able to shorten the computation by adapting for  q > 1 

the interesting devices suggested by Levinson [15, §3] for  q = 1   .   But 

for other types of processes,  as time flows and our data accumulate, we 

would like to let the  n  in (3.1) increase, and thereby utilize our additional 

data.   This would mean solving larger and larger linear systems de novo, a 

procedure of questionable efficiency. 

It was Wiener' s belief that an efficacious computational procedure 

would emerge from a deeper analysis of the problem.   We now turn to such 

analysis. 

#637 -9- 
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4.   The shift operator and Wold- Zasuhin decomposition 

00 
Let  (f   )      be a  q-ple, weakly stationary  SP .   Then as Kolmogorov 

[12]     showed, there is a unique unitary operator  U  on fo^CH onto ^ 

such that 

(4.1) UU^)  =fji+1,    -oo<n<oo,   l<i<q   .  (6) 

U  or rather its inflation   U ,   defined by 

(4.2) y(f)=(Uf1 Ufq),   f MfS^t )iq 

is called the shift operator of the   SP  .   Obviously  U  is an operator on 

tn M  onto  in ^   such that 
— 00 — 00 

(4.3) U(f   )  =f    ,, -oo <n <oo   . 
-   -n       - n+1 

Now 

u*(mn) =Vi^% 
7 

Hence (   ) 

( 4. 4)       V = Rstr..    U   = an isometry on inrt  onto  in ,   . 
d % 0-1 

The theory of this isometry  V  subsumes the time-domain analysis of 

our   SP,    as we shall now indicate. 

Since the appearance of von Neumann and Murray' s work on operators 

it has been known in some implicit form that if  V  is an isometry on a 

Hilbert space   H  onto  R c jj,   then 

00 

ji =   "   vk( M) + ^    Vk( R1-) ,   Vj( R-1) 1 Vk( R1) 
k=0 k=0 
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where the two subspaces on the right side of the equality are themselves 

orthogonal.   But the great importance of this result has emerged only recently, 

of. Halmos [6 ].   As indicated in [22,2.8] it extends to Jiq:   if  V is the 

inflation to     jr  of an isometry on  W  and   R c jp  is the range of V  , 

then 
00 

(4.5)     )iq = ^    VkUq) +  ^   VNR
1

),   V^R1) iVk(R-1-) 
k=0 - k=0-     " "    " "     " 

where the subspaces on the right side of the equality are again orthogonal 

but in the sense of ( 2. 4). 

Turning to our  SP,   and applying ( 4. 5) with   M = ftu   and  V  as in 

( 4. 4), we get at once 

00 

Now, and this is crucial, we can show that for a non-deterministic   SP 

!B-i0!Bo = G^o^'   where io :::-0 ' ^o'^-l^   ' 

which means roughly that   R    -to   , ^n\n   is "one-dimensional".   Letting 

g    = U   g ,   we readily obtain for any  n 

oo oo 

H'6) Ü}n=llLoo+S    &(<3n.k)>      fo.oo -i- £  ^ (b (V    * 

Q 

This is the Wold-Zasuhin decomposition of the subspace  tn     (   )    . 

In this decomposition the vector 

(4.7) g    =Ung   ,    where     g0=    10 - (1 olü!^) 
d d "b 
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th •* 
is called the  n      innovation vector of our SP, and   (g   ) _oe  is called 

its innovation SP .   Obviously 

( 4.8) (g   , g  ) = 6      G ,    where     G = (g A, g J   , 

and since   Ug« = f . - (f JtoJ  =li"li>   (of. 2.16), we see that 

( 4. 9) G = G   = the prediction error matrix for  lag 1   . 

It is convenient to "normalize" the innovation vectors.   For this we 

think of the matrix  G  as a linear operator on    C     to    C ,  C   being the 

complex number field.     Let the matrix J  represent the projection on 

C        onto the range of  G   .   It is easy to show that there is a unique 

qXq  matrix ü suchthat 

(4.10) H J1 = J1 = J-LH   ,   HN/G = J =N/G • H  . 

Indeed, 

(4.11) H = NG +J"1)"1 

which shows that 

(4.12) H   is invertible, hermitian and positive-definite . 

Now let  h    =Hg     .   Then we find, cf.  [22,(3.4) et seq.], 

(4.13) g    =Jg    =\/Gh  ,   (hm, hn) = 6mn J,   j-Lhn =0   . 
-n    —n -n       -m-n       -mn-7   -    -n 

We call  h     the   n    normalized innovation vector of our  SP. and -n  !lS  ' 

(h )       its normalized innovation   SP .    In the full rank case   p = q   , we 

have  det G ^ 0,   and so we can define the  h     by the simple equation 

-12- #637 



h    ={*JG)    g     .   Since in this case J^I,   we have  (h   ,h )  -6     I -n"-      -n -—' _m'-n mn- 

As shown in [22, 3. 2, 3.5] the decomposition (4.6) of the subspace 

00 
tn     yields a decomposition the process   (f )_oo  itself: 

(4.14) f     = u    + v  ,      u      i  v   .   -oo < m, n < 
-n     -n     -n        -m-n 

00 

00 
where   (u  )   ^  is a (purely non-deterministic) one-sided moving average 

00 
of the normalized innovations   and has the same rank as   (f   ) ^ ,   and -n -oo ' 

( v   )        is purely deterministic.   More fully, 

00 00 

(4.15) u    =E    A    N/Gh     ,       ZlAkN/G|p<oo,     (9) 
n     k=0     K K       k=0~K L 

where 

(4.16) AkN/G = (f 0,h.k), A0N/G =N/G, A0g0 = g 0, AkG =(f 0,g.k) 

are unique, although the  A,    are not unique.   Also 

The relations ( 4.14) -( 4.17) constitute an alternative form of the Wold- 

Zasuhin decomposition. 

It is well known that the conditions ( 4.14)  and 

- 00 
[  ( u   ) _oo   is purely non-deterministic 

(4.18) \ oo 
1   (v  )   _   is deterministic V.  -n -oo 

do not together characterize the Wold-Zasuhin decomposition.   An extra 

condition   is needed, which is usually stated (with an obvious notation) 

in the form 

#637 .i3. 
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(4.19) mem        for some integer n   (    ) . 
- n     "' - n 

Does (4.19) work with   n = x 7 {   ) .   Recently Robertson [26, App. B] 

has shown that the answer is in the negative for  q > 1,   but that the 

stronger condition 

( 4. 20) m ^ C m ^f)     &    rank {u ^ = rank (f ^ 

does work for any  q;   i.e.  (4.14),  (4.18) and (4. 20) together characterize 

the Wold-Zasuhin decomposition.   A recent result of Robertson [ 27 ] on 

the wandering subspaces of unitary operators yields a nice, spectral free, 

proof. 

5.    Spectral analysis 

oo 
The shift operator   U   of our  q-ple  weakly stationary   SP (f   )_oo 

has a spectral resolution: 

2TT 

(5.1) U = /     e       E(de) 
0 

where   E  is a projection-valued measure over ([0, 2T] ,ß),   ß being the 

family of Borel subsets of [0, 2"] .   By taking the inflation   E  of   E   we 

associate two new measures with our  SP   : 

(i)    a  M -valued   countably-additive, orthogonally-scattered ( c. a. o. s.) 

measure   £  defined by 

(5.2) |(B)   =E(B)f 0 ,      B c ß; d *., 

so-called, because of its decisive property 
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B, C e ß &   B, C   disjoint    ==>     |_( B) j. £.(C)   ;    (12) 

(ii)   a   q X q  non-negative, hermitian matrix-valued measure   M 

defined by 

(5.3) M(B)   =(E(B)f 0, E(B)f 0)   = (|( B),  §{ B))      Be ß . 
d 

We then introduce the well known   q X q   spectral distribution   F  of our 

SP  by the definition 

(5.4) F(e)   = 2TT M(0,e] 0<e<2TT     . 
d 

Likewise one could define the  q-ple   process of orthogonal increments 

(riQ, G c (0, 2TT] )    associated with our process by 

ii ß = 2TT^(o,e] o < e < 2TT . e d     - 

Next, for a complex-valued function  4> on [0,2TT]   we define the 

integrals 

2IT 2Tr 2TT 

/   (Ke)§(de),/ <j)(e)M(de), / 4>(e)dF(e) 
o o        ' o " 

to be 

2n 2TT 2TT 

(/   (KeuNde))?,, [/  c}>(e)M.,(de)], [/ c|,(e)dF (6)]  . 
o o 1J o 1J 

These definitions make sense, since the components   t  of |   are   W-valued 

c. a. o. s. measures for which a theory of integration akin to that given in 

Doob's book   [4,Ch.IX, §2]   is available, and the entries M  , F    ofM,F are 
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complex-valued measures, and complex-valued functions of bounded 

variation.   With these definitions we easily get the spectral representation 

of our  SP  and of its covariance (cf. [36,1, 7.1]): 

(5.5) fn = /2VnieE(de)f   =/Vniee(de) 
'n       0 " 0 

(5.6) r   =/ e"nieM(de) =-L / VniedF(e)  . r  e-ni6M(de) -j;  J 
0 0 

Finally, we define matricial Riemann Stielties integrals of the fosm 

2TT 

/    *(e)dF(e)^(e)  ,      where   $, ^  are continuous matrix-valued functions. 
0    " 

and  F  a matrix-valued function of bounded variation, by adopting the 

classical pattern, cf.  [36,1,§4].   From (5.6) we then get 

(5.7)     (I  A  f     ,E    B   1     )  =^ /  (2   A  ejie)dF(e)(Z   §   ekie)* 

where   J, K are finite sets of integers and   A,, B,    are   qXq  matrices, 

cf. [36,1, 7. 9(a)]. 

It is natural to ask if the equality (5.7) continues to hold when limits of linear 

combinations and of trigonometrical polynomials are taken on the two sides. 

This raises the preliminary question as to how J $(e)dF(e) ^(6) or equivalently 
ZTT 0 * 

J $(G) M(d6) ^(9) is to be defined when *, ^ are any (discontinuous) matrix- 
0 "       " 

valued functions on [ 0, ZTT] with Borel measurable entries. We can pose this 

question for any non-negative, hermitian matrix-valued measure M, not just 
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the one defined in (5.3).   The further development of the spectral theory 

of  q-ple  processes hinges on the answer (§6). 

(>.   The space   L^ M for a non-negative hermitian matrix-valued measure. 

Let M be any   q X q  non-negative,hermitian matrix-valued measure 

over {[ 0, 2T] , ß)    and suppose that we have in some way defined the 

integrals 

2TT 

(i) /   *(e) M{de)*(e) 
o 

for  q X q  matrix-valued functions   *, \&   with Borel measurable entries. 

It would then be natural to define the   L _   class with respect to the 

measure  M by 

(6.1)   L_      = L_([0,2Tr], ß, M) = {$: /    *(e)M(de)* (6)   exists}   . 
- ^i M    - * "    d     "     o     " 

Now one of the fundamental properties of the class   L- .,   when  q = 1  , 

i.e. when   $, M   are complex-valued, is its completeness under the 

norm 
2lT 2 

I *L= N/J   l*(e) I M(de)  . 
M     ^0 

This is the core of the celebrated Riesz-Fischer Theorem.    For  q > 1   , 

the corresponding norm would appear to be 

2* )!c 

(6.2) |$|   =N/trace  /     *(e)M(de) «   (9)   . 
- M o     *        * 
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!^r ■■■ 

Our definition of the integral (1) would be useless, were the space   L   M 

defined in (6.1) to be incomplete under the norm (6.2). We are thus faced with 

the following problem: 

Problem.    Define the integrals (1) in such a way that the space 

- 2 M   ^e^ined in  ( 6.1) is complete under the norm (6.2). 

This problem was settled by M. Rosenberg [32, §3] for rectangular 

matrices   *, *  and by Yu. A. Rosanov [31, Ch. I, §7] for vectorial   $, ^, 

independently around 1963.   We shall follow Rosenberg' s more in- 

clusive treatment.   He observed that a  qXq non-negative, hermitian matrix- 

valued measure M is invariably absolutely continuous with respect to the 

non-negative^ real measure trace M  .   Writing TM for trace M,   it follows 

that each entry of M  has a Radon-Nikodym derivative with respect to  TM • 

The  qXq  matrix  dM/drM   of these derivatives has nice properties, and 

this suggests adoption of the definition 

2Tr 2TT dM (6.3)   /   *(e)M(de) *(e) = /   *(e)pi(e) *(e) • TM(de)   , 
o   ' d   o - 

the last integral being defined (earlier) as the matrix of Lebesgue integrals 

of the entries of *(dM/dTM) ^ with respect to the ordinary measure TM . 

Rosenberg showed that this definition solves the problem.   Thus 

6.4.   Thm. (Rosenberg-Rosanov)   With the definitions 6.3 and 6.1 

13 
the space  L_ w   is complete under the norm (6. 2). (    ) 

—2,M 



In case the measure M   is absolutely continuous with respect to 

Lebesgue measure  L,   it follows at once from simple properties of Radon- 

Nikodym derivatives that (6. 3) is equivalent to the simpler definition 

(6.5) /    ${e)M(de) ^(G) = -r^ J    $(9) F'(6) *(e) de   , 
0     ~       " ~        d 0 

where   F  is as in (5.4).   The work of Rosenberg and Rosanov thus sub- 

sumes the partial results obtained previously on the basis of (6.5), e. g. 

those in [36,11, §4]. 

Having defined the integrals (1), we can introduce in  L 

matrix- and complex-valued inner products by the definitions: 

(6.6) ($, >ir)      =    / $(6) M(de) ^ (6),   $, ^c L 
--Md0-        - - ---^M 

(6.7)      ((*»*))M  = trace(t'l:)M   • 
d 

The norm introduced in (6. 2) can then be written 

(6.8) ltlM
= ^(S»*)^     • 

The equations ( 6. 6) -( 6.8) are comparable to ( 2.1), ( 2. 5), ( 2. 6). 

The fact that   L_ „   is complete under the norm (6.8) thus shows that L _ .. 
-2,M "2>M 

is Hilbertian in the sense of   §2.      Thus every non-neqative,hermitian matrix- 

valued measure M generates a Hilbertian space J^ M   • 

This result holds in particular for the measure M ,   defined in ( 5. 3), 
00 

which is associated with the   SP   (f   )_oo  .   Thus every   q-ple, weakly 
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stationary  SP  possesses two Hilbertian spaces IP^ C )iq  and  L . 

We shall refer to them as the temporal and spectral spaces of the   SP  . 

For q = 1  we know that they are isomorphic Hilbert spaces under a natural 

correspondence, cf.  [12, ( 2. 7) ].   This isomorphism survives when q >1 (§7). 

7.   Isomorphism between the temporal and spectral spaces 

Let §  be any  W -valued, c. a. o. s. measure over ([ 0,2tr], ß), cf. §5, and let 

M|(B) =(§(B), |{B)),     B« ß    . 

Then  M.   is clearly a   qX q non-negative, hermitian matrix-valued measure. 

The crucial fact that the associated space L    M   has a (complete) Hilbertian 
* —| ZTT 

structure enables us to define integrals of the type    j     $(6)^(d9),   where 
0   "" 

$ e L_ .. ,   by following essentially the procedure adopted for stochastic 

integration in Doob1 s book   [4,Ch. IX,§2], and to prove the following 

theorem (for details, cf. Rosenberg [32, §4]): 

7.1  Thm.    Let (i) |  beany  M -valued, c. a.o.s. measure over 

([0,2*]), ß),    (ii) M.(B)    =     (|(B),|(B)),   Be ß, (iii)  S(e)    = 
^ d        ' " "5 d 

g(|(B): Be ß} C jiq      (14)  .   Then 

(a)   g e S16'    <=>3$€L suchthat  g = J   $(e)|(de) 
-    - 2,M| "       0   ' 

( b)   the   $   in ( a)  is uniquely defined up to a set of zero  M-.   measure 

(c)   the correspondence   *—"j    $(6)^(d6)   is an isomorphism on 

(£)      0   a L- .,    onto the subspace  S 6    of  W     ; i.e. it is one-one on   L, ..   onto 
-2,M - -2»¥t 
It)   * 6 

8V6'   and, cf. (6.6), 

277 Zlt 

(«,*)w  =(/*(e)|(de),   / *(e)|(de)),  $,^6L . 
"   I      o' o '-i 
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Each   M -valued, c.a.o. s.  measure thus carries with it two isomorphic 

Hilbertian spaces   S        and   L .   This applies in particular to the 

00 

00 
c. a. o. s. measure,defined in   ( 5. 2), which is associated with the   SP ( f   )_ 

But now   ^(B)  =E(B)fn,    and so we have 

(7.2)    SU) = (5(E{B)f0:    B € lO x (^{lA 0:    -°o < n < oo } = ^   . 

Here the first and third equalities are obvious, and the second stems from 

the   basic   connection between   U   and  E  given in (5.1), as is well known 

from the theory of cyclic subspaces of Hubert spaces.   We thus get as s 

corollary of 7,1 the result: 

00 
7.3   Thm.   For a q-ple, weakly stationary  SP (f   ) ^ ,   the corres- 

" 2TT 'n " 

pondence   * — j   $(9) E(de) f 0   is an isomorphism on the spectral space 
0   ' 

L,. w   onto the temporal space   n\     c M 
-2,M -oo- 

This theorem shows of course that the equality ( 5. 7) holds when limits 

q 
are taken in the  W    and   L,. ..   topologies on the two sides. - 2, M 

8.   Cross-covariance and spectra.   Subordination 

To treat  simultaneously two or more  q-ple,   weakly stationary   SP1 s 

00 00 
( f   ) QQ,   ( g   ) oo > • • • >   ^ is convenient to use subscripts or superscripts 

f, g, ...   to distinguish their possessions, e. g. to denote their temporal 

(f)      (g) oo oo 
spaces by  rt}^» Ü}^   >•••   •   The processes   (f   )_oo, (g  )_oo   are said 
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to be stationarilv cross-correlated, if and only if the Gram matrix 

-m -n        -m-n 

( f   g)    00 
depends on   m-n   alone.   The bisequence  (r ) ^   is then called 

oo oo (f f) 
the cross-covariance of  (f  )_oo   with   (g )_oo   .   Obviously r,  '       is the 

r.    introduced in ( 2.10). 

By a slight extension of an argument of Kolmogorov [ 12,Thm. 1] it follows 

oo oo 
that if  (f   )  _,   (g  ) ^   are stationarily cross-correlated, then there is a — Q—oo7       _ j^ —oo J ' 

unique unitary operator  U  on the subspace  clos. {in^    + m^   }  onto itself 

such that   Uf    = f   ,,   and   Ug    =g11.   l<i<q.   In dealing simul- n      n+i n       n+i      ""    " 

taneously with several such processes it is therefore legitimate to start out 

with a single shift operator  U  on tt to M : 

2TT 

(8.2) U = /   e'16   E(de) 
0 

n    oo n    ^ 
and to suppose that our   SP's   are of the form   (U   f) ^ , ( U  g)     , ...    , 

q 
where   f , g , ... « li ,   and   U   is the inflation of   U   . 

With each ordered pair of  f , g t M    we associate the   q X q  matrix- 

valued cross-measure   M, ,   no longer hermitian-valued, and the  q X q 

cross-spectral distribution   F ,    defined by 

(8.3) Mfg(B)    =   (E(B) f, E(B)g) Be ß 

(8.4) If (Ö)     =   2TTMf (0,9],        0<e<2TT   . 
9 d 
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Obviously 

and 

U  AB)   = U; (B),      B c ß 
-gf -fg 

.(f,g) _ r2Vnie^ i^ --L r ^-nie 

< c dM 
(8.6)     J  $(e)M(de)^(e)   =   J   $(e)-^(e)^(e)a(de) 

,8.5, r<^'=/  e-"i9M£g,de, ^/ e-"iedF£g<e) . 

With  g = f,   the   Mr,, F-x, r    *    we get are of course the  M,  F,  T 
2     -' — fr -if -n —' "' -n 

introduced for the   SP   (f   ^   in  (5.3), (5.4),  (6.6). 
"n " 2TT 

We can define integrals of the form  /   *(e) M(de)^(e), where  M 
0 

is any ( non-hermitian) matrix-valued measure,by a slight extension of ( 6. 3): 

Zv 2TT 

f $(e)M(de)^(e)   =   / 
0   ' ~ d      0 

where   a   is not necessarily TM but some non-negative real measure with 

respect to which   M is absolutely continuous.   We can show that the 

definition does not depend on the choice of  a    .   We can then prove the 

following basic result by using a slightly extended version of the opera- 

15 
tional calculus:  (    ) 

8.7   Thm.   Let (i) f,g e 3iq,   (ii) g M gU L^ ),   (iii)*ÄcL 

be the isomorph of  g,   i.e. 

i f\ 21T 

g ^(g^oo ) =i *a(e)E(de)f    . 
0      9 

Then 

(a)      M {(B)  =M§f(B)  =/$.(e)Mff(de),      Bcß 
B 

(b)    M^(B) =/ *5{e)M{f(de)*.(e) = / *-(e)Mf*(de), Be ß  . 
gg B   ,       „        , B 
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Remark.     8.7(a) suggests that   *A  is in some sense the Radon- -g 

Nikodym derivative of M , with respect to Mff . But a theory of such 

derivatives for matricial measures has not been developed so far, and it 

would be premature to write 

i = (gliO =/   -[7T3L(e)E(de)f   , 
o   mii 

when   q > 1,    even though this equality prevails for  q = 1   . 

fl     00 
Following Kolmogorov [12, §4] we say that the   SP (U g)-oo is subordinate 

to the SP (Unf ^ ,  briefly, g is subordinate to f, if and only if tn^C fo^ . The 

last theorem then yields the following extension of Kolnwgorov' sThms. 8, 9 in [12]: 

8.8   Cor.    The following conditions are equivalent: 

(i)    g   is subordinate to   f,   i.e.   ^   ^ I^-oo 

(ii) 3$€ L suchthat   g = /   $(e)E(de)f 
-^,Mff -      0   - 

(lii) 3 $ €  -2,M      such that for any  B c ß 

^gf<B) =/*<e)Mff{de),  Mgg{B) =/$(e)Mff(de)$*{e)   . 
B B 

In case   g  is subordinate to   f,   the functions   $   in (ii) and (iii) are equal 

a.e.    (M,,)    . 

The following is M. Rosenberg' s unpublished generalization of Kolmogorov' s 

Thm. 10 in [12]: 

8. 9. Cor.  Let  g  be subordinate to f,   and   $   be as in 8.8(ii).   Then 

f   is subordinate to  g  (i.e.   f, g  are mutually subordinate), if and only if 

dM,. ^ ^^ff 
rank{^(e)dTM   (6) $ (6)} = rank-^jjj—(6),   a.e. (TMff)   . 
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Thm. 8. 7 has many applications.    For instance, we can derive from it 

the spectral distribution of the projection of a component of a q-ple   SP 

on the orthogonal complement of the space spanned by the rest of its com- 

ponents.   First by taking Besicovitch derivatives [1] of our matricial 

measures in 8. 7 with respect to Lebesgue measure  L we can show that (    ) 

(8.10)    (det F'f)F^ = F^f(adjFJf)F^,    a. e.   (L) 

whether or not the functions   F,,, F,.-, F ,,*   are absolutely continuous on -ff -gg'  -fg 

[ 0, 2TT] .   From (8.9) we can in turn deduce the following 

00 
8.11   Lemma .    Let (i)    (f ) ^   be a   q-ple, weakly stationary   SP, and 

A     be the determinant of the derivative of its spectral distribution, 

(ii) A    ,   be defined similarly for the   (q-l)-ple SP  formed by the first 
q-1 

oo '■"■'(q) 
q-1   components of   (f   )_oo,   (iii)    f be the projection of the last com- 

ponent of  f      on   { (Sif1 , -00 < m < oo    1 < i < q-1) I1  .   Then the (real- - n m >     —    — 
~( q) oo 

valued) spectral distribution  F    of the   (1-ple) SP  (f     )      _   satisfies q n    n=-oo 

the equation 

A    .(6) • FMO)  = A (9),    a.e. (Leb.)   . 
q-l q q 

In case  A    , > 0   a. e.  { Leb),   we have of course 
q-1 ' 

F,(e)=A(0)/A    .(G),    a.e. (Leb.), q q      '    q-l       ' 

This result was obtained by Matveev  in 1960, cf [23,p. 35, ( 5) ], in 

the course of deriving spectral conditions for the determinism of a   q-ple 

SP .   With   q = 2  it reappears in 1964 in a paper of L. H.  Koopmans 

[13 ,Thm. 1],  who seems to have been unaware of Matveev' s work.    Indeed, 

many of Koopmans1 results on coherence of processes [13,14] are deducible from 

those given above and standard theorems on Besicovitch derivatives [1]. 
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9.    Spectral analysis of a purely non-deterministic  SP 

00 
It is easy to show, of. [36,1, 7. 7(a) ], that if  (f    )_oo   is a moving 

average SP. i.e. 

00 00 

(9.1)     f     =y      C.h     .,    (h   ,h   )  =6      J,     Tj     lc.jl^<oo -n    ,u ^—k-n-k'      -m'-n mn-*   ,     ^     k- E 

where  J  is a projection matrix, then its spectral distribution   F   is absolutely 

continuous and 

oo 

(9.2)    F'(6)  = ^(eie)^(eie)>!<, a.e. (Leb.),where  V{eQ) =2    CkJe kie 
k^ 

The inequality in ( 9.1) shows that each entry of ^  is in   L«     on the unit 

circle  C = [ |z| = 1]   of the complex plane, a fact we shall express by 

writing   ^ c LJC)    . 

Now let   (f   )        be any non-deterministic process.   Then, as em- 

phasized in §4, the coefficients  A. ^G ,    which occur in its Wold-Zasuhin 

decomposition: 

00 

rf     =  u    + v    = 7!   A.N/Gh     ,  +(f    |m   J    , -n      -n     -n     ,   rt~k   --n-k     v-n --oo'    » 
k=0 

(9.3) \ oo 
I   lAk^G||< oo   , 

are uniquely determined by the  SP   .   This fact and ( 9. 2) suggest associating 

with our  SP  the function $  defined by 

00 

(9.4) $(eie)    =   I   A.^Geki8 

d    k=0   K    " 
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00 
We call $   the generating function of   (f   )_oo   .   It plays a vital role in 

the theory.   The inequality in ( 9. 3)  shows that $ c L   (C)    .   But the Fourier 

series of   $    s devoid of negative frequency terms,and actually   $f L     (C) , 

where 

(9.5)    L°+(C)    =   {^:  ^e L   (C)    &   /   e"kl%(eie) dG =0   for  k< 0}   . 
"^ d      '     '     '* 0 

From ( 9. 2) we immediately get: 

oo 
9.6 Thm.     The purely non-deterministic part   (u )_oo intheWold-Zasuhin 

decomposition of (f   )_oo has an absolutely continuous spectral distribution   F 
such that 

F' (6)  - «Me10) ^''(e16)      a.e.   (Leb.) 

0+ oo >!« . * 
where   $ «  L_  (C)    is the generating function of   (f   )     . and $ (•)  = {$(*) ) -     - d - n -00 - d   ~ 

00 
In case   ( f   )  _   is itself purely non-deterministic,  we have   v    = 0   , 

u     = f   ,    F     = F ,    and it follows from 9. 6 that   F   itself is absoutely -n-n'   -U-' 
* 0+ 

continuous and   F' = $ $     a.e.,   where   $€ L    (C)    .    The converse also 

holds as Rosanov [ 29 ] has shown, cf. also [37, 2. 3].    We thus get the 

following spectral characterization of purely non-deterministic   SP' s : 

9.7 Thm.    (Rosanov).   A   q-ple   SP   is purely non-deterministic, 

if and only if its spectral distribution   F  is absolutely continuous and   F' 

admits a factorization 

F^G)  = ^(eie)^*(eie)   a.e.  (Leb.),  where   ^e L°+(C)   . 

0+ 
A function   •&   in  L-  (C)    admits a holomorphic extension to the inner 

iii * disk   D   = [ lzl<lj   and its adjoint   ^     a holomorphic extension to the outer 
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disk  D_ - [1 < |z I < oo]   .   Thm. 9. 7 thus reveals an interesting connection 

between  q-ple  prediction and the inner-outer factorization of  q X q  matrix- 

valued functions in  L. ( C)   . 

10.   Spectral analysis of a full-rank  SP 

Let   F  be the spectral distribution of a   q-ple,   weakly stationary   SP 

00 
( f   )    ,   and   G   be its prediction error matrix for lag 1,   cf.  ( 4. 8),( 4. 9). 

Then,   cf.  [36,1,7.10;    or 8,1, Thm. 8], 

1     27T 

(10.1) det G = exp {-7-  f    log det F'(e)de}   . 
27T   0 

This fundamental equality, first stated by Whittle [34] in 1953, is a de- 

terminental extension of the Szego-Kolmogorov identity [ 12, (8. 44) ] for 

q = 1,   and shows at once that 

(10.2) p   =   rank of  SP = q   <==»   log det F( •) t LJ0, 2TT]   . 
d 

We thus have a perfect spectral characterization of the full-rank case.   A 

less obvious consequence of (10.1) is the following important result 

[36,1,7.11]: 

* 00 
10.3.   Thm.    Let (i)   (f   )_     be a  q-ple, weakly stationary   SP  of 

full rank  q,   (ii)    f     = u    + Y     be its Wold decomposition ( 4.14 et seq), 

00 
(iii) F,F   ,F     be the spectral distributions of the processes   (f   ) -'-u-v - n -00 ' 

00 00 
(u  )    .   (v  )    .    (iv)   F   , F.   be the absolutely continuous, and non- -n-00       -n-0° -a   -b ' 

17 
absolutely continuous parts of  F  (    ).   Then 
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F    = F and      F    = F u     . -u     -a -v-b 

We may paraphrase this result by saying that in the full rank case 

there is concordance between the Wold-Zasuhin decomposition in the time- 

domain and the Lebosgue-Cramer decomposition in the spectral domain. 

On combining 10. 3 and 9.6 we get another important result on full-rank 

processes.    Since   F    =F     and   F'  =0,   we have   F'= F1  ,   whence: -u-a -b       ' --u' 

10. 4  Thm.     The derivative   F'   of the spectral distribution of any 

full-rank   SP   admits the factorization 

F'O)  = $(eie)$*(eie),   a.e. (Leb.)   , 

where   * c L_  (C)   is the generating function ( cf.  9. 4). 

The results (10. 2), 10. 3, 10.4   shed much light on the full-rank case 

p = q,   and it is natural to ask whether corresponding results are available 

for  0 < p < q   .   We have three questions: 

Q. 1.   Given  0 < p < q,   what is the spectral   n.  & s. c. that a   SP 

have the rank  p   ? 

^. 2.   For a  SP  of rank   p   such that   0 < p < q ,    are the Wold- 

Zasuhin and Lebesgue-Cramer decompositions in concordance? 

If not, what extra condition would restore this con- 

cordance? 

Q. 3.   For a  SP of rank   p   suchthat  0 < p < q,   does   F' admit a 

* 0+ 
factorization  F' = ^ ^      a. e.(Leb. ^ where   tf e L    (C)?  If not.. 

what additional condition would ensure such factorization? 
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Of these the most basic question Q.l is still unanswered, despite some 

important work by Matveev   which we shall discuss in §12.   Q. 2 and Q. 2 

have, however, been answered satisfactorily, cf. §§11, 12. 

11.   Concordance of Wold-Zasuhin and Lebesgue-Cramer decompositions 

for dengenerate ranks 

In 1959 the writer showed that the answer to the first part of question 

Q. 2 ( §10) is in the negative.   He gave an example of a 2-ple process of 

rank 1 for which 

(11.1)    {0) ^ M_ooCMoo     &     F    is absolutely continuous, 

[19, §3].   For this   SP  concordance between the W. Z. and L. C. decomposi- 

tions fails since   F   *0=F. ,   cf. 10.3 et seq. - v - b' 

For 2-ple processes of rank 1, the writer also gave the extra condition 

needed for concordance, viz.   det F' (6) = 0, a. e. (Leb.), cf. [19,4. 5]. Now 

it is easy to show that   rank F' (G) > rank F' (6) = p, a. e. (Leb.).    (Just 

combine 9. 6 with 13. 3 below).   Hence for   q = 2, p = 1  our result may be 

written: 

concordance     <==>     rank F'(6)  =1,   a.e. (Leb.)  . 

A complete generalization of this result was obtained by Robertson [ 26,10. 2] 

in 1963: 

11.2 Thm.    (Robertson)   For any q-ple,weakly stationary   SP  of (any) 

rank  p,   there is concordance between the W. Z. and L. C. decompositions, 
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if and only if  rank'F'IG)  =p   a. e.   (Leb.),   where   F   is the spectral 

distribution of the   SP   . 

To prove this theorem Robertson used a result on the ranges of the 

matrices F'(9), viewed as linear transformations on C to C , 

C      being the complex-number field.   This result is itself interesting 

[26,9.11]: 

on oo oo 
11.3   Lemma (Robertson).    Let   (x   )    ,    (y   )     ,    (z   )      be   q-ple   ^-n'-oo'    vi n'_oo'    x-n'_oo n ^ 

weakly stationary   SP' s   with the same shift operator,  and let 

x    = y    + z 
- n     - n     - n 

(x)        (y)        (z) (y)    1      (z) 
^oo      "LV     +II'oo    ' iÜoo     iiBoo       ' 

Then, with an obvious notation, 

(a) Range   F' (Ö)  ^ Range FMÖ) + Range F^G),      a. e.   (Leb.) 

(b) Range F' (e)o Range F'(e)={0},       at e#   (Leb.) 

(c) rank F' (6)  = rank F' (B) + rank F' (6) a. e.   (Leb.). 

Some of these results were duplicated independently by Jang Ze-pei 

[10 ]• 

12.   Degenerate rank factorization 

The writer' s example mentioned in connection with the question   Q. 2 

in §11 also shows that the answer to the first part of Q. 3 ( §10) is in the 

negative.    For this consider the   2-ple   process of rank 1 satisfying (11.1). 
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* 0+ 
Were   F' = * *    a. e. with * € L    (C),   then since   F  is absolutely con- 

tinuous, it would follow from Rosanov' s Thm.  9. 7 that the   SP   is purely 

non-deterministic, in contradiction to the assertion In      # {0}   in (11.1). 
' — —00 — 

As in the case of Q. 2, the extra conditions needed to secure a positive 

answer to Q. 3 were first given for the case   q = 2 ,  this time by Wiener and 

the writer [37, 4.1] in 1959; and the result was then fully generalized 

by Matveev [ 24 ] in 1960, but for processes with continuous time.   Whereas 

in  the full   rank case   p = q   we encounter (holomorphic) functions of the 

Hardy class   H     on the disk   D ,   or rather their radial limits in   L    (C) , 

for the degenerate rank cases   1 < p < q   we encounter quotients of H 

functions on   D ,   i.e. the (meromorphic) beschranktartige functions intro- 

troduced by R. Nevanlinna to round off the Hardy class theory.    ( For a brief, 

relevant account see [37, §i & Note on p.  308].)     The final result, of. 

[24,Thm. 1], is as follows: 

12.1  Thm .    ( Matveev)   Let   F   be the spectral distribution of a 

q-ple SP   .   Then   F'    admits a factorization 

F'O)  = ^(eie)^>'<(eie)    a.e. (Leb.),   where   ^€L°+(C)    , 

if and only if 

(1) rankF'(ö)  = const, p ,    a.e.  (Leb.) 

18 ^ * * * ^ ( 2)  there is a principal p X p  minor (    )   M = M,        .     of  F'    such that 
i,... i 

log det M c LJ0, 2TT] 
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and for each   M{i.,...,i  },   and each  kcU, ...,p} 1 P 

detM}(e) ie 
 IS  = lim  *,      (re   ),   a.e. (Leb.),   *.        beschranktartige, 
del M(e) r-*l- h^ h\ 

where   M.   denotes the minor obtained from   M by replacing the   i,      row of 

M by the appropriate entries of the   i     row of  F'   . 

Matveev' s proof is based on the fact: 

(12.2)        ^e  L    (C)      >    rank^(e   )   = const,    a.e.  (Leb.)    , 

which emerges on applying theorems on Hardy class functions to the sums of 

the determinants of principal   rXr   minors of   y,   1 < r < q,   cf.  [16,2. 5]. 

Matveev showed that if the constant in (12. 2) is   p ,   then 

^(e   )^   (e   )  =X(e   )X(e   )    , 

where X = [... |     0    ] e ^^(C)   . 
qXp qXq-p 

The example mentioned above and Thm. 12.1 together answer the question 

Q. 3 completely.   Thm. 12.1 also answers completely the following question 

related to Q. 1: 

Q- I1 •    Given   0 < p < q,   what is the spectral  n. & s. c.   that a   SP 

be purely non-deterministic and have rank   p ? 

The answer is immediate from the Theorems 9. 7 and 10.1 of Rosanov 

and Matveev: 
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12. 3 Cor. A q-ple SP is purely non-deterministic and of rank p , 

if and only if its spectral distribution F is absolutely continuous and F' 

satisfies the conditions (1),  (2) of Thm.  12.1. 

Unfortunately, this still leaves us in the dark as regards   Q. 1.   For 

instance, the answer: 

F'    satisfies the conditions (1),  (2) of Thm. 12.1 

won'tdo. Indeed, by Robertson's Thm. 11. 2the condition (1) of 12. lensures 

concordance, whereas we knowthat there are non-deterministic processes for which 

concordance fails.   A proper answer to Q. 1 would be a major contribution. 

13.   Spectral and autoreqressive representations for the predictor of a 

purely non-deterministic   SP 

00 
We shall now turn to prediction proper.    Let   ( f   )      be a   q-ple , 

non-deterministic   SP,   h     be its   n      normalized innovation,  and '    -n ' 

f ^ = (f    llrO   be the prediction of  f      with  lag v > 1   .    Since   h    , 

^    € ^^>   they have, cf. Thm.  7.3, isomorphs   W, Y    e L0 ,,,  suchthat (    ) -v-00 --v-2,M 
2TT A 2-n 

(13.1) h    =/   e"nie W(eie)E(de)f        f     = / Y   (el8) E( de) f       . 
n       0 0 

Our first problem is to find   Y     for a purely non-deterministic   SP   . 

For such a process the Wold-Zasuhin decomposition ( 4.14) -( 4.17) shows 

that 
00 00 

f     = Tj  A. N/Gh     , ,        f tj = YJ   A. N/Gh    .      . -n     ,   rt~k    --n-k'       -v     ,      -k    --v-k k=0 k=v 
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Letting  n = 0,  taking isomorphs and proceeding heuristically, we get 

00 

I =E A.^Gekiew(eie)  = $( ei0) W( ei0) 

00 

(13.2)      Yv(e   )   ^ IJ   Ak\/Gex W( e    )   ^[e        $(e   )]0+W(e    ) 
k=v 

where   $   is the generating function of the   SP,    and [...]_     denotes the 

function obtained from   ...    by cutting off the negative frequency terms from 

its Fourier series.   The first equation yields   W( •)  = {$(•)}   ,   which is wrong 

since   $  need not be invertible.   Our heuristic procedure is thus untenable, 

but it reveals that the determination of Y     is tied up with the possibility 

of inverting the generating function   $ . 

To investigate the invertibility of   $,    we first note that its 

degeneracies stem from a constant matrix, as the following canonical 

factorization given in [16, 3.1] and also [ 22, 3. 6] makes clear: 

13. 3  Thm.     The generating function   $   of any  q-ple^ non-deterministic 

SP   is expressible in the form ü (• WG,   where   G   is the prediction error 

matrix with   lag 1,   and   ßc L     (C)    is invertible   a. e.  (Leb.), and (     ) 

n   (0)  =1   .   In fact 

ie 
00 

kie 
n(e10)     = J-Lt $(eie)H   * i+Z  bvl^      > 

k=l 

where J  and  H are as in ( 4.10) -( 4.12). 

Since,   J , H, $   are uniquely determined by the   SP (cf. ( 4. 9),  ( 9. 3), 

et seq.), so is ß  .   In fact, as the writer showed in [17, 2. 2], its inverse 
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ß'V )    ={«(•) y1  is the isomorph in L 0 ^ of the (non-normalized) innovation 
- d     " ~d,}J^i 

SIQ   in the purely non-deterministic case, i.e. 

(13.4) g n = /   e"nie Q~\ e16) E( de) f 0, fi'1 c L 2> M   . 

Since  h0=Hg0,   its isomorph  W is of course Hß     = (ßH   ) 

From 13. 3 it easily follows that  n H~   = J ^ + * •   Thus, for a purely non- 

deterministic   SP  we find that 

(13.5) W(eie)   = {J-L+ ^(e16)}"1        in L -2.M > — 

For  q = 1  we know the corresponding result for any (purely or impurely) 

non-deterministic   SP,    viz. 

(13.6) W(eie)  =   xA(e)/$(eie)      in      L2 M 

where   A  is any subset of [0, 2TT]  such that  A, A'    are carriers of the 

(mutually singular) measures   |E(')u  |   ,   |E(')v  |   ,   u , v    being as in 

the Wold decomposition.   But for   q > 1 the difficulties caused by rank 

deficiencies and the failure of concordance (§11) have prevented so far the 

discovery of a full-fledged generalization of (13.6). 

Inserting the value of  W   given by (13.5) into the heuristically 

obtained equation (13.2), we get 

(13.7)    Y^e19)  =[e'Vi%(eie)]0+{j-L+$(eie)}"1   in   L^   . 

This equality was proved for purely non-deterministic   SP1 s  of full rank 

q   in [ 36,11, 4.11];   a slight variatio»- of the arguments used therein shows 
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its validity for 1 < p < q • The equations (13.1), {13. 5), (13. 7) thus 

yield spectral expressions for the predictor and for the innovations of a 

purely non-deterministic   SP   . 

We must next investigate the expressibility of the predictor   f      directly 

in terms of the   f   . ,  k > 0   .    For this we must appeal to a most basic 

property of the generating function, established by the writer [19, 2. 9], viz. 

.     ,.     ,2L its optimahty (    ) : 

13. 8   Basic Lemma   ( a)   The generating function   $   of a q-ple,    non- 

deterministic   SP   of any rank p   is an optimal function in   L     (C) ,    i.e. 

(i) t+(0) >2 
0+ * * 

(2) * c  L» (C)    &    ff    = $$  ,    a. e. (Leb.)   on   C 

=>   N/{*+(0)^*(0)}< $+(0)     . 

(b)   In case   p = q,   we have 

1      2TT
 
ie+ 

det$+(z)  =exp{~/  ~~-log detN/F'OMe},     |z|<l   . 
0   e   -z 

Now let us confine attention to purely non-deterministic processes 

of full rank.   By 13.8(b), the holomorphic (matrix-valued) function $     on 
————— — -j. 

the inner disk  D     : 

00 

* J z)  = Z SL 
z >     z « DL»      where     C,   = A. N/G   , -+ ,   o   k     ' +' -k     -k   —   * k=0 

is invertible at each   z c D  , and hence 

00 

{$ ,(z)}"   = ^   D,  z  ,       z £ D       , 
■+ k=0    K + 
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where the   D,    are matrix coefficients, satisfying 

C0D0=1, C0D1 + £1D0=0>Coe2+g1D1 + C2D0 = 0,  ... 

It follows from (13. 7) that  Y     has a holomorphic extension   (Y  ) ,   to 
- V - V    + 

D     given by 
+ 

oo oo oo t 

k     v   ^     k     v ^       k (Y   )i(z)   -- )\   C,   zk •  X   D,zk = ^ E   , z  ,      z e D^ 
k=v k=0 k=0 

where 

k 
(13-9) E   u =Z  C  x. D,    .   . 

- i'k     "      v+] — k-j 

This suggests that in some sense we should have 

00 

„,16,        V r-       kie 

kcO 

But in general  Y    4  1.(0,   and the   E   ,    will not be the ordinary Fourier - v     -1 - vk 

coefficients of Y     .   There will, however, be circumstances under which 

A kifi ifi 22 
(13.10)      lEvke

KW-Yv(ev)   in   L 2 M topology ( "),  as   n-*, 
k=0 ' — 

and hence by our Isomorphism Thm. 7. 3, 

n 
(13.11) Z   E i* i, "^       in    n\^,   as  n-oo  . \         ' i-i     vk -k      v -oo' 

k=0 

In short, there are processes for which the coefficients   E   ,    given in 
' - vk 

(13. 9) provide an   autoreqressive representation for the predictor, to wit 

00 

(13.12) lv*l   E      f . 
k=0     K     K 
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00 

For such processes we call  (E   ,),   0  the time-domain weighting sequence 

for the predictor   f 

The papers [ 36, II; 21] are devoted largely to the demarcation of processes 

for which the equivalent conditions (13.10) -(13.12) prevail.   No complete 

characterization has been obtained so far — only sufficient conditions, the 

best being perhaps the one in [ 21, 5. 2]: 

I  F   is absolutely continuous on [0,2TT]  , 

(13.13) { 
F'e  hjO,ZTr]    &   (F)      € ^[0,2^]    . 

Also sufficient, of course, is the stronger boundedness condition, of greater 

practical interest, cf. [36,11,5.1 & 7.3]: 

F   is absolutely continuous 

1 XI  <[' 
(13.14) , 

FUe   ) <>il   a.e.  (Leb.),   where   (XX-cV <«> 

It is easy to show that the autoregressive relation   (13.12) is equiv- 

alent to the discrete matricial Hopf-Wiener equation; 

00 

(13.15) r ^   = X  E , r    ,,     n >o . -n+v     f-*   -vk-n-k' - k=0 

The continuous parameter analogues of (13.12), (13.15)  are, for a given 

real   lag h > 0   , 

oo 
(13.12') fh = /dEh(T).f-T   , 

0 
oo 

3.15') r(t+h)  = / dE   (T)-r(t-T),      t>0   , 
0    -n 
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where the weighing  E, (•)   is a   q X q   matrix-valued function of bounded 

variation on [0,oo)  . These are the equations with which Wiener began the 

subject of multivariate prediction [35,Ch.IV].   He showed that in simple 

cases of practical interest the weighting   E, (•)   can be found by solving 

the matricial Hopf-Wiener equation (13.15').   We now see that his pioneering 

work belongs to a rather late chapter of the general theory. 

14.   Determination of the generating function from the spectral density. 

00 
Given the covariance bisequence   (r.)       or equivalently the spectral — £ —oo 

density   F'   of a q-ple, purely non-deterministic   SP  of full rank, the 

determination of its generating function  $   is of great importance for pre- 

diction.   This is because once $  or its Fourier coefficients   C.    are found, 

we can get   $      and its Taylor coefficients   D.,   and thereafter the 

crucial function  Y     and its coefficients   E   .       required to determine the 
- v - vk 

predictor  f v; cf.  (13.7),  (13.9),  (13.1), (13.12). 

In the case   q = 1   $   can be found in principle from the equation 

1       21T   ie + 
(14.1) *+( z)   = exp {^ /    ^--Z- logN/F'(e)de},       |z|<l   , 

0    e    -z 

and its coefficients   C,    found from k 

(14.2) X   ae1"0 = expH? + f a,eki9 }   , 
00 

z c^16 
= exp { 0 1 ? 

+ 
00 

E a. e 
k 

k=0 1 

where   a.    is the   k      Fourier coefficient of  log F'   .   These are canonical 
k 

-40- #637 

mmmm»n 



expressions for optimal Hardy class functions in terms of the norms of their 

boundary values.   But for  q > 1   analogous expressions are not available 

because the exponential law,   exp ( A + B)  = exp A • exp B,    fails for 

matrices.    In fact, no general, closed-form expression for $   or for its 

leading coefficient ^G   in terms of  F' is known for the cases   q > 2   . 

Its discovery would be a major contribution. 

Fortunately, we do have an infinite series expansion for $   and   G   in 

terms of   F'    in case the conditions (13.13) are met, i.e. for the only known 

case in which the predictor has an  autoregressive representation (13.12), 

cf. [ 21, 4. 7].    Since an explanation of this result and its proof would 

require a digression,   we shall only describe how with its aid the crucial 

weighting coefficients   E       may be computed from the   r,    .   For simplicity 

we shall assume that our  SP   satisfies the stronger boundedness condition 

(13.14) rather than (13.13).   For details the reader should see the papers 

[36,II,§6;   21, §§4,5]. 

Kno wing the covariances   r,    and the bounds   N., X.'    in (13.14), we 

23 
first obtain the slightly modified coefficients (     ) 

n = —i-r rrt -1,   r = -JL- r ,    n ^ o -0     \+\'   -0  -'    -n     M-V   -n * 

We then compute   A0, A., A»,. ..,   where  A» = 1^,   and for  m > 
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oo oo    oo 

(14.3) A     =   -r'  +y r' r'      -Z Z r' r'     r'      +...   . 
-m    ,       -m     ^J

1 -n - m-n    u, LJ, -p-n-p -m-n 
d n=l n=lp=l 

We next find   Bn, B., B  , ...   from the recurrence relations 

A0B0=i,   A^ + AjB^O,   A^^A^ + A^^O, ...    . 

Since  A0 = I,   this computation does not involve matrix inversion.   Finally, 

for any given   v > 1,   we compute the coefficients   E  „. E   ., E   ^, ... 
-•   ' - vO'  - vl' - v2 

from 

]=0 

There are the weighting coefficients required in the autoregressive series 

(13.12) for the predictor  f      .   To complete the solution of the Prediction 

Problem 2.16,  we must find the prediction error matrix  G      for   lag v   . 

For this, we first compute the crucial matrix G  from 

00    o0 

(14.5) G = ^-^r- Z    Z   A     r       A'     . M-X'   LJ
A 

LJ   -m—n-m-n    ' n=0 m=0 

and then  G      from 
- v 

v-1 ^ 
(14.6) G    =  Z   BkGB:      . 

V     k=0    K        K 

The practical utility of this scheme of computation will be discussed 

in §15.   In it the generating function $ has been by-passed.    But if   $ 

is wanted, its Fourier coefficients   C,    can be found from the equations 

(14.7) Ck=BkN/G      . 
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15.   The factorization of matricial rational spectral densities 

00 
In most practical problems of prediction the q-ple   SP   (f   )        has a 

24 
spectral density  F'   on  C,    (    ) which can be analytically continued to 

the entire complex plane   C   to yield a matrix rational function, i.e. one 

whose entries are complex-valued rational functions.    Such a spectral 

density is said to be rational.   Retaining the symbol   F1   for the extension 

to  C,    we have 

(15.1) F'u) =zrr:i P(
Z

)>    
zt C 

1 
P(z) -, 

where   P  is a  qXq   matrix polynomial and   p( •)   a complex polynomial. 

We infer easily that there is an integer r,   1 < r <. q> such that   rank 

F' ( z)  < r,   for any   z,   and rank F' ( z) = r  except for a finite number of 

z   .   We call  r the rank of   F'   . 

A basic result, known generally but properly enunciated and proved by 

Polyak and Rosanov, of.  [30, Lemma 3; 31, Ch.1,10. 2], isthat a (matricial) 

rational spectral density   F1   admits a factorization 

ie iO     *    ift 
(15.2) F'U   )   = ^(e    )>Me    ),      0 < 6 <  2*   , 

where   ^c L    (C)   and   ^   is rational, i.e. its analytic continuation to 

C is rational.   It follows from Rosanov' s Tbm. 9. 7   that a q-ple process 

with a rational spectral density of rank r > 0  is purely non-deterministic 

and of rank  r  .   We owe to Rosanov [ 30,Thm. 7] the proof that its generating 
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function   *   itself has a rational extension  R to  C,   and moreover 

(15.3) rankR(z) = r,      z € D+   .   (25) 

Thus by Thm.  9. 6 

(15.4) F'U) = R(z)R*(z),       Z€ C   . 

To carry out the prediction for lag v for our process when it has full 

rank  q,   we must find  R  and 

(15.5) Yv(eie)  =[e"VieR(eie)]0+ ^(e16)}"1   , 

cf. §14 and (13. 7).   The methods proposed for this fall into two broad 

categories:  (i)   algebraic, (ii) analytic. 

(i)   An algebraic method has been proposed by Yaglom [41, §1] for 

continuous time processes, in which   R  is by-passed, and  Y     found 

i6 
directly.   In the discrete version, it is assumed that  rank F^e   ) = q  for 

all  6,    so that condition (13.14)  is fulfilled.   Since the   Y      in (15.5) is 

rational, Yaglom starts out with a rational function Y     with undetermined 

coefficients, and shows that these can be found from the conditions 

Y   ( z)   is holomorphic for   z i D 

{z     !_ - Y  ( z) } ?'( z)    is holomorphic for   z c D_   . 

The first of these is obvious from (15. 5), and the second is just a spectral 

parap brazing of the condition  f    -f    i.f,,   k<0   .   Yaglom attacks Y 

row by row, and obtains a system of linear equations for the unknown 
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coefficients of Y     .He also adapts this method to prediction on the basis 
- v 

of a bounded time-interval in the past, [ 4], §2]. 

Youla [42] has given an algebraic technique for carrying out the factori- 

zation (15. 4) even for   r < q ,   again for continuous time, based on the 

diagonalization of polynomial matrices by elementary transformations, 

cf., [ 5, p. 139].   In the discrete case we get from (15.1) 

F,<z) =^77\ Ci<z) ' D<z) * C^z) p( z)  -1 - - 2 

where   D( •)   is a diagonal matrix polynomial and   C ,(•) , C J *)   are 

matrix polynomials with constant-valued determinants.    By exploiting 

the hitherto unused fact that   F'   is a spectral density, Youla shows that 

the last factorization can be brought into the form (15. 4), where   R is a 

qXr  rational matrix, holomorphic and left-invertible on   D    .   (A slight 

variation of his technique would yield a  q X q  rational   R of rank r. ) 

In effect, Youla proves a factorization theorem, but his proof is constructive 

and provides linear algebraic equations for the determination of  R  . 

Wiener's original approach [35,Ch.IV] may be classified as analytic- 

cum-algebraic.   To solve the Hopf-Wiener equation (13.15') a Fourier 

analytic technique is to be used, which leads to the rational factorization 

problem (15. 4).   But to solve this problem an algebraic method is proposed, 

cf.  [35, p. 108] . 

(ii)   The only purely analytic method known to us is the one outlined 

in §14.   This will work when   F"    satisfies condition (13.13), i.e. for 
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16 
rational   F', only when  det F'ie    )  > 0  for all 6   .   This method has been 

adapted to continuous time processes by Wong and Thomas [ 39], who also 

point out some short cuts in case   F'    is rational.   But their paper contains 

several obscurities.   This question of the extension of the factorization 

algorithm to continuous time is also the subject of a recent dissertation of 

H. Salehi [ 33].   In many practical situations, we would expect "weak 

memory", i.e.   F    = 0   for   Ikl > N .   In such cases   F'    would be a 
o 

matrix trigonometrical polynomial (i.e. a rational function with poles only 

at   0  and <*>).   Each series on the right-hand side of (14. 3) would then 

terminate as would the series (14. 5), and the method would gain in 

efficiency. 

Which of these methods for finding  R and  Y     is best suited to the - - v 

modern digital computer ?  A weakness of the analytical technique of §14 is 

the occurrence of alternating signs in the series (14. 3) resulting perhaps 

in slow convergence.   On the other hand, the algebraic techniques that 

have been proposed involve the solution of large systems of linear equations, 

and it is not clear to the writer if they are generally more efficient.   A 

comparative study of the effectiveness of all these methods on the computer 

would be very useful.   Some interest has been aroused recently in this 

question because of its bearing on the discrimination of seismic signals 

due to different types of subterranean disturbances, cf. [28], [40].   With 

a slight smile one may say that an answer could even contribute to world 

peace. 
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FOOTNOTES 

1. A precise rendition of this statement will follow in a moment. 

2. In calling E    a covariance matrix we are assuming tacitly that each 

E{f   )  =0   .   This assumption entails no real loss of generality since 
n 

our   SP   is stationary and therefore the vector  E( f   )    is independent 

00 
of  n   .   Alternatively, we may allow our   SP  (ln)n=_00  to be non- 

stationary .  assuming only that (1. 4) holds for  f   ,   where 

'^'i      1 i 
f   =f   -E(f   )    . 

n     n n 

3. Our usage of bold face letters is as follows:   f, g, etc. denote members 

q q 
of   )i    and   in , ft   denote subsets of   H    .   A, B, etc, denote   qXq 

matrices with complex entries, and $ ,  ^, etc. denote   q X q   matrix- 

valued functions. 

4. We write   A >B   or  B < A    to mean that the matrix   A-B   is non-neqot'  , 

definite.   A    denotes the adjoint of A   • 

q       _. q 
5. For G c ji ,    (25(G)   denotes the smallest subspace of  Jl     containing  G . 

N. B. Linear combinations must be taken with matrix coefficients. 

The symbol   = should be read "equals by definition".   We shall 
d 

often use it to introduce previously undefined expressions. 

6. U   can of course be extendeo ( non-uniquely) to a unitary operator on 

M  onto   H. 

7. Rstr.   A denotes the restriction of the operator  A to t e subset  D of its 

domain. 

8. For  q = 1,    it was first proved by Wold [38] in 1938, and extended to 
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9. 

continuous time by Karhunen [ 11] and Hanner [ 7].    For  q > 1,   it was 

conjectured by Zasuhin [ 43], and proved in the full rank case by Doob [4] 

and in general by Wiener and the writer [ 36,1].   The present method of 

obtaining it is given in [ 22, 3.1]. 

The Euclidean norm   IAL   of a matrix   ^ = [a..]    is defined by 
ir 

|A|    = trace Aä"' = £   £ |a.,| 
i=lj=l ij 

10. and hence by stationarity for all integers   n   ( and also   n = o0 )    . 

00 00 
11. With   n = «5   (4.19) reads:    (u   )       is subordinate to   (f   )      , 

- n -oo -n -oo ' 

of.   §8 below. 

12. With the probabilistic interpretation of   M,    viz.  W=L2(n, 3^,  P),    | 

becomes a q-variate random measure over   ([0,2Tr],ß),   but with the 

nice property that the   q-variates   corresponding to disjoint Borel sets 

are uncorrelated. 

13.    Actually Rosenberg takes rectangular *, ^   in Def. (6.3), of sizes 

pX q   and   q X r,   respectively, and his result [ 32, 3. 9] applies to all 

the   L r2,M spaces obtained with different choices of  p   . 

14. See Footnote 5 for the meaning of this symbol (^   . 

15. Unfortunately there is no published work which treats the results of this 

section from our point of view.    A treatment from a somewhat different 

standpoint is available in Rosanov [ 31, Ch. I,§§7, 8]. 

16. adj A    denotes the adiuoate matrix of  A,   i.e. the transpose of the 

matrix formed by the cofactors of  A,   so that 

A •  ( adj A)  = (det A)I = ( adj A)   -A   . 
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17. That every matricial distribution  F  possesses such parts   F   , F, — — a   —D 

is a celebrated result of Cramer [ 3, §4, Thm. 2].   See [ 19,1.1] for a 

formulation of this result, especially suitable for our purposes. 

18. M p  denotes the  p X p  minor of  F'   made up of the rows 
")l,,,,,Jp 
l.,. .,,i ,   and the columns   j.,-...] 1 p 1 p 

19. For convenience we have transplanted the functions  W, Y    from 

[0, 2IT] to the circle  C = [ |z| = 1]. 

20. yjf     denotes the holomorphic extension to  D   = [ |z| < 1]   of a function 
— T T 

0+ 
^  in  L2 (C) . 

21. The word "maximal" is used instead of "optimal" in the English trans- 

lations of the Russian literature, in which a less explicit but related 

result appears,cf.  [30,Thm. 4],   For  q = 1,   the word "outer" has been 

used by Beurling [ 2] and his disciples. 

22. i.e.  since the spectral distribution   F  is absolutely continuous, 

/   IE 1  k6^9"7  (e10) IN/F'(e)de-*0,   as  n-«»   . 
0   k=0   VK 'v 

23.   Obviously,  r'   is the  kth  Fourier coefficient of -J^TF'C) -1   - 

24. It is now convenient to transplant   F'   from[0,2TT]  to  C   . 

25. Rosanov' s proof can be simplified by appealing to the generalization of 

the classical canonical factorization of Hardy class functions to matrix- 

valued functions of the Hardy class  H-  on D    given in [18, 20,22]. 

This generalization employed prediction theory as well as Potapov' s 

important work [ 25], and illustrates how the subject has ramified. 
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